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ABSTRACT: Several classes of multiple-mode rheological
constitutive equations are tested for fitting and predicting
viscoelastic flow properties of a typical low-density polyeth-
ylene melt. An optimization procedure is used to fit the
phenomenological parameters of each model under consid-
eration to experimental data taken in small-amplitude oscil-
latory shear flow and steady shear flow. These parameter
values are then used to generate predictions for transient
shear and uniaxial elongational flow experiments, and the

predictions are then compared to experimental data. Model
successes and failures are discussed, and the outlook for
using rheological equations in real design processes is ad-
dressed. © 2005 Wiley Periodicals, Inc. ] Appl Polym Sci 99:
405-423, 2006
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INTRODUCTION

For many years, one overall goal of theoretical rheo-
logists has been to obtain a level of understanding of
material behavior sufficient to allow for the prediction
of viscoelastic properties in arbitrary flow fields. After
approximately 75 years of effort spent in pursuit of
this goal, it is still largely unachieved, even for iso-
thermal cases. In recent years, modeling efforts have
intensified as theoretical developments, such as repta-
tion theory, mature, and as computational power has
increased. It is now time to assess, in general terms,
how close rheologists are to achieving this goal.

In this article, we offer a current assessment of the
potential predictive capabilities of viscoelastic fluid
models. Rather than focusing on the particular models
popular today (which might not be popular a decade
from now), we examine instead semiphenomenologi-
cal models (i.e., models involving empirical parame-
ters) that characterize a certain class of model types.
This allows us to judge the capabilities of the class
using the simplest possible methodology, that is, with-
out getting caught up in model-specific peculiarities
and complexities. Suffice it to mention that all of to-
day’s popular models fall into one of the model classes
examined herein, with one caveat: since we are exam-
ining polymer melts, which have a spectrum of relax-
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ation times, we are only examining multiple-mode
versions of viscoelastic fluid models. We see no point
in trying to fit and predict nonlinear viscoelastic prop-
erties if the linear ones cannot be fit accurately. Since
single-mode models are incapable of matching linear
viscoelastic data from polymer melts in a quantitative
fashion, it is apparent that we need only consider
herein multi-mode versions of the chosen model
classes.

The strategy of the research reported in this article
is to fit the models examined herein to a limited
amount of easily obtained experimental data of a
typical polymer melt, and then to test how well each
quantitatively predicts experimental data to which
the inherent model parameters were not explicitly
fit. The methodology used to fit the model parame-
ters to the requisite amount of experimental data is
now easily implemented using standard desktop
computers. This methodology was described in de-
tail in a prior publication,' so only a brief summary
will be included below. In the prior publication,
only a single model class was examined, as the point
of that article was to develop the methodology.
Here, we wish to apply this methodology to draw
more general conclusions.

The model classes examined in the succeeding sec-
tions are the following. The most basic semiphenom-
enological model class is that of the uncoupled (i.e., no
coupling between the various relaxation modes), lin-
ear relaxation models with constant relaxation times.
The most well known and widely used of these is the
multi-mode Upper-Convected Maxell Model, and
thus we examine it herein. Of course, this model has
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no hope of fitting any nonlinear viscoelastic proper-
ties; however, we examine it as a basis for the linear
viscoelastic response exhibited by many other models
in the linear limit. The second class is that of uncou-
pled, linear relaxation models with variable relaxation
times. Examples of models falling into this group are
the Phan-Thien/Tanner Model,> the Modified Upper-
Convected Maxwell Model,® and the Extended White/
Metzner Model* (EWMM). Herein, we examine a ver-
sion of the EWMM (as defined below) as an apt rep-
resentation of this class. The third class is that of
uncoupled, nonlinear relaxation models. The example
of this class studied herein is the most well-known
model of this type, the Giesekus Model.”

The remaining two classes of viscoelastic fluid mod-
els examined herein are those that involve coupled
relaxation modes, that is, the modes are no longer
taken to be independent of each other, as was the case
in all examples considered above. The first remaining
class is that of the pair-wise coupled relaxation modes
models, that is, when each mode is taken to couple to
one, and only one, other relaxation mode. The second
remaining class is that in which each mode of a given
model is allowed to interact with every other mode.
Although it seems obvious that the first class is merely
a special case of the second, we make the distinction
between these two classes for the following reason:
many recently developed viscoelastic fluid models
were written in terms of two relaxation modes, and
these modes are coupled with each other. To fit exper-
imental data, more than 2 modes are needed; hence,
these models are generally duplicated the requisite
number of times, thus producing a pair-wise coupled
model. (As an example, the fitting capabilities of the
Pom-Pom Model®~® were investigated recently using
12 modes.”*° The multiple-mode version of this model
falls into the class of pair-wise coupled modes with
nonlinear extensions—see below.) Obviously, this is
just a special case of the more general fully-coupled
models, but it is interesting to examine pair-wise cou-
pling as an entity unto itself because this class pos-
sesses some striking peculiarities'—see below for
more details. The models examined herein for both of
these classes are the semiphenomenological multiple-
mode models introduced by Beris and Edwards'’;
these were chosen as the simplest possible represen-
tations of this class of models.

Literature overview

Of course, this is not the first study aimed at fitting
and predicting rheological properties of polymeric
fluids. One of the first and most extensive tests of
rheological constitutive equations was that of Quin-
zani et al.,'*> who examined the fitting capabilities of
several multiple-mode rheological models (using 4
modes), including the Giesekus Model, for a vast
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array of experimental measurements of polyisobu-
tylene solutions. Results of this study were encour-
aging for the future, but were limited by the sim-
plicity of the models examined therein.

With regard to polymer melts, an international
consortium has recently undertaken the task of
matching experimental polymer processing flows to
numerical simulations.'® Efforts with multiple-
mode Giesekus and Phan-Thien/Tanner Models
(with 4-9 modes) have yielded reasonable predic-
tions of process flow characteristics.'*'> As already
mentioned, several investigations of the predictive
capabilities of the Pom-Pom Model (with 8-12
modes) have also already been published, with im-
pressive results.®~'°

EXPERIMENTAL

All experimental data used in this investigation were
taken using standard rheological testing equipment
and procedures at the University of Tennessee. Results
presented below are for a typical, industrially rele-
vant, low-density polyethylene (LDPE) sample at
175°C. The LDPE sample was obtained from Exxon,
having been prepared using a Ziegler—Nata catalyst. It
has a wide molecular weight distribution, with a value
of the polydispersity index of 5.15. The value of the
melt index was 0.2 g/min, with a density of 0.923
g/cm’. The weight-average molecular weight, accord-
ing to gel permeation chromatography, was 80,350
g/mol.

A variety of experimental data were obtained, as
described in a preceding article.! A dynamic fre-
quency sweep was performed in the range of 0.01s ™'~
100 s~ *. From this, the storage modulus (G') and loss
modulus (G”) data in small-amplitude oscillatory
shear flow (SAOSF) were obtained. Shear viscosity
data were taken over seven decades of shear rates
(0.01 s~'-100,000 s~ '). Steady-state first normal stress
difference data covering a fraction of this shear-rate
range were also obtained, along with transient shear
stress data (start up and relaxation) and first normal
stress difference data. Transient elongational viscosity
measurements were made using four semihyperboli-
cally converging dies of Hencky strains 4, 5, 6, and 7,
in the manner described in Ref. 16. We would expect
this elongational viscosity data to be accurate for this
particular polymer melt at this temperature and strain
rate regime.'”

Optimization methodology

To place all models on an even footing, we took the
number of modes used in each model as 6. This num-
ber was chosen because it allowed a fit of the storage
and loss moduli of the polymer melt used in this study
to about 5% relative root-mean-square (RMS) error
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TABLE 1
Number of Fitting Parameters for Each Model Investigated in this Study. (See text for acronym definitions.)
Model UMM UMM-EWM UGM PCMM PCMM-EWM FCMM FCMM-EWM
Number of
parameters 12 18 18 15 21 42 48

using the PADLAP program of Simhambhatla and
Leonov'®; thus, we hypothesize (as rationalized be-
low) that 6 modes should be sufficient for fitting most
nonlinear properties for this particular polymer melt
as well. (See below for more details concerning the
PADLAP fit to the experimental data.)

The overall optimization strategy of this investiga-
tion is to fit exactly 6 modes of a given model to the
dynamic moduli (in SAOSF) and steady-state viscosity
and first normal stress coefficient (in steady shear
flow), and then to check whether the model predicts
well the remaining experimental data. Each model
examined below contains a definite number of param-
eters, which must be fit to the specified data set. The
number of parameters fitted for each model investi-
gated herein is listed in Table I. (See below for acro-
nym definitions.)

For each model investigated, a set of coupled,
ordinary differential equations (ODEs) quantify the
time evolution of the independent, nonvanishing
elements of the mode stress tensors in homogeneous
flow fields. For fixed values of the model parame-
ters, a fourth-order Runge-Kutta method is used to
solve the set of coupled ODEs. At steady state, the
Newton-Raphson Method is applied to solve the
resulting nonlinear algebraic equations. For all
models examined herein, the dynamic moduli in
SAOQOSF can be calculated analytically.

The technique used to optimize the model param-
eters was the Nelder and Mead Downhill Simplex
Method (NMDSM), which requires only functional
evaluations, not derivatives.'” Although this optimi-
zation technique is not very efficient in terms of the
number of functional evaluations and computa-
tional effort required, the NMDSM will always find
a minimum, provided that one exists. However, the
NMDSM is not guaranteed to find the global mini-
mum, which creates a challenge for its users. Insight
into the physical significance of the parameters and
an understanding of the underlying physics is thus
crucial to obtaining a good initial guess to the opti-
mization problem. Multiple initial guesses are re-
quired to test whether the resulting minimum is
indeed the global minimum. As the dimensions of
the parameter space increase when the number of
mode pairs increases, optimization using this
method can require substantial computational time.
As reported in Ref. 1, this method appears to give
adequate results for this type of parameter fitting.

Thus, we continue to use it in this investigation. It
has the further benefit of being very simple to im-
plement, thus making this methodology available to
any engineer with basic programming skills.

The constraints on the parameters have already
been discussed.! For the parameters common to all
models, that is, the relaxation times, A(s), and the
concentrations, 7; (mol/m®), of each mode, the con-
straints are that each quantity is a positive entity.
Constraints on parameters that are peculiar to the
various models investigated herein are discussed
later.

We used the following expression for the objective
function, F,,;, which was the function minimized by
the NMDSM:

Ntype Nj _ 2
Ri,j,exp Ri,j/model
E E wi,]' R
j=1 i=1 L],exp

Fobj = . (1)

Ntype 1

E E w;

j=1i=1

In this expression, 1, is the number of data types
(types of data for the present article are the dynamic
moduli, as well as the steady-state shear viscosity and
first normal stress coefficient), 7; is the number of data
points of a specific type of data, w;,; is the weight factor
of the corresponding data, and R is the value of either
the experiment or model.

Since the dimension of solution space can be quite
large, the method used to obtain a reasonable initial
guess is vital to the optimization code. Generally,
we fit the dynamic moduli data from the SAOSF
experiment by varying A; and n; for i =1,...,6. We
used initial guesses for the relaxation times with
incremental orders of magnitude. Furthermore, for
initial guesses of the modal concentrations, we
chose values that were very close to zero. Once the
dynamic moduli data were fit well, we then used the
converged values of the parameters as an initial
guess to fit simultaneously both steady-state shear
viscosity and dynamic moduli data. Finally, we also
used the optimized parameter set from the previous
step as the initial guess to fit simultaneously three
sets of experimental data, including: dynamic mod-
uli, steady-state shear viscosity, and steady-state
first normal stress coefficient. We did not include
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Figure 1 Fit of the Padé-Laplace program PADLAP to experimental data of the dynamic moduli in SAOSF. See Table II for

parameter values.

the experimental data for the transient shear stress
or first normal stress difference among the data that
we fit, nor the transient uniaxial elongational vis-
cosity data.

Over the past few decades, several different meth-
ods have been put forth for fitting rheological models
(typically composed of uncoupled Maxwell modes) to
linear viscoelastic data.'®?°72* Over time, these meth-
ods have generally become more sophisticated as
computational capabilities have increased, and have
done a better job of fitting parameters with smaller
RMS error. These methods are, however, not easily
generalized to cases involving nonlinear viscoelastic
data and more complicated rheological models. Such
methods that do exist for fitting nonlinear viscoelastic
data suffer from a lack of sophistication. We are not
addressing the issue of sophistication in this article;
we want to employ a crude optimization methodology
to examine what is possible for the average industrial
polymer engineer to achieve with a given rheological
model.

To examine whether or not our optimization tech-
nique is sufficient for this application, we must com-
pare it with one of the sophisticated methods men-
tioned above. Those methods, as discussed above, are

only for linear viscoelastic data. Although there is no
basis of comparison for nonlinear viscoelastic data, we
can compare our methodology to prior optimization
methods for the linear data. In Figure 1, we present the
dynamic moduli data of the LDPE sample described
above in the SAOSF experiment, along with a fit of 6
uncoupled Maxwell modes using the Padé-Laplace
methodology of Simhambhatla and Leonov,'® accord-
ing to the authors” PADLAP program. The RMS error
of this sophisticated fit is less than 5%, which is quite
good. We believe that 6 modes is the minimum num-
ber needed by this method to get a very good fit of the
experimental data. The parameter values obtained
from the optimization routine are presented in Table
II. Suffice it to say that the exact same fit can be
obtained using the optimization routine developed in
this work. Furthermore, for the 6-mode version of the
Upper-Convected Maxwell Model used herein, not
only is the fit the same as in the more sophisticated
code, but the parameter values obtained are essen-
tially the same as well (within 1% RMS error). Thus,
we conclude that, at least as far as the linear viscoelas-
ticity data are concerned, our optimization methodol-
ogy is sufficient to the task under consideration.
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TABLE 1I
Parameter Values Determined by the Padé-Laplace Method Using the PADLAP Program
Mode no. 1 2 4 5 6
A; (s) 1.000E—2 5.248E—2 2.754E—-1 1.445 7.586 3.981E+1
n; (mol/m?) 1.441E+1 4.260 2.208 6.880E—1 1.781E—1 4.959E-3
Uncoupled linear relaxation models with constant 6 Ao
relaxation times G'(w) = E niA;® )
. . . “ 1+ (o)’
The example tested under this class of viscoelastic =1
fluid models is the Uncoupled Maxwell Modes
(UMM) Model, which is composed of 6 Upper-Con- .
vected Maxwell Modes. Beforehand, we were aware G'(w) = 2 (6)
of the well-known deficiencies of this model for fitting v (7\ 1+ (Aw)?’

nonlinear viscoelasticity data, but we examine its be-
havior here as a base case, since all other models tested
herein reduce to it in the linear, uncoupled modes
limit.

The UMM Model equations are expressed in terms
of six uncoupled evolution equations for the 6 mode
stress tensors, oj, i=1,...,6:

(TI;XB + Aié-ixﬁ = ZniNAkBT)\Z‘AaB, (2)

where the upper-convected derivative is defined as

) GUQB
5! + 0 VO' —a Vo

O‘aB - ot ay V - O-;g VVU“' (3)

Y

In the above expressions, kj is Boltzmann’s constant, T
is the absolute temperature, N, is Avogadro’s num-
ber, and A,z = (V,vg + Vgv,)/ 2 is the symmetric part
of the velocity gradient tensor field. The total extra
stress in the fluid is then expressed as the sum overall
of the mode stress tensors:

6
Oup = E O-iaB' (4)
i=1

This equation set can be used to calculate the rheo-
logical properties of the polymer following standard
definitions. The storage and loss moduli in SAOSF can
be expressed as

respectively, where w is the angular frequency of the
SAOSF and m; = n;N kgTA;.

In steady shear flow, the shear viscosity () of the
UMM Model is independent of the shear rate, as is the
first normal stress coefficient (W,). Consequently, we
have no hope of fitting the shear-thinning behavior
exhibited by this LDPE, and therefore we perform the
optimization by fitting the model parameters to the
SAOSF data and the Newtonian plateau for n at low
shear rates. The parameter values thus obtained are
reported in Table III. They are significantly different
from those found using the PADLAP program, which
is due to the fact that we have used the steady-shear
data in the optimization as well as the SAOSF data.
This is also an indication that the PADLAP parameters
cannot be used to model accurately steady shear flow.
It raises the question as to whether or not the relax-
ation times determined using only SAOSF have any
meaning outside of SAOSF; it is well-known that the
parameterization of linear viscoelastic flow data is an
ill-posed mathematical problem.*

The fit of the UMM Model to the experimental data
for the dynamic moduli (G’ and G”) versus frequency
in the SAOSF experiment is virtually indistinguishable
from that displayed in Figure 1. The fit is very good,
and the RMS error is less than 5%.

In Figure 2, we plot the experimental data and the fit
with the UMM Model for the steady-state shear vis-
cosity versus shear rate. With this model, we can only
fit the Newtonian plateau at low shear rates; however,

TABLE III
List of Parameters for All Modes of the UMM Model Used To Fit the Data of SAOSF and Shear Viscosity at Low
Shear Rates

Mode no. 1 2 4 5 6
A; () 1.108E—3 4.237E—-3 4.082E—2 2.487E—1 1.435 9.583
n; (mol/m"’) 7.456E—9 2.455E+1 5.995 2.337 7.862E—1 1.448E—1
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Figure 2 Steady-state shear viscosity and first normal stress coefficient versus shear rate, as fitted with the UMM Model.

the Figure indicates that it is possible to do this simul-
taneously with fitting the SAOSF data. Also in Figure
2, the model prediction is given for the first normal
stress coefficient as a function of shear rate. As is well
known, the UMM Model predicts a constant value of
W,. Therefore, we have no hope of predicting anything
other than the Newtonian plateau value of this quan-
tity at low shear rates; perhaps surprisingly, the value
predicted is not too far off from the experimental
value. Of course, the value of ¥, predicted by this
model is zero for all shear rates.

Since the UMM Model cannot fit the shear-thin-
ning behavior of either n or ¥, there is no point in
trying to predict the transient steady-shear data in
this regime. Our conclusion is thus that the UMM
Model cannot be used to predict nonlinear rheologi-
cal behavior in shear flow, although it is possible to
get good results within the linear regime.

In Figure 3, we plot UMM Model predictions for the
uniaxial elongational viscosity versus time for differ-
ent elongational strain rates. For comparison pur-
poses, the experimental Trouton curve (3n at ¥ = 0.01
s 1) and its UMM Model prediction in steady shear
flow are plotted as well. This figure demonstrates that
the UMM Model generally reflects the trend of change
of elongational viscosity versus time and strain rate in

the region studied, although the errors between theo-
retical results and experimental data are huge. Fur-
thermore, the steady-state values of the viscosity pre-
dicted by the UMM Model are obviously going to be
way too high.

Uncoupled linear relaxation models with variable
relaxation times

The Uncoupled Extended White/Metzner (UEWM)
Model is a variation of the UMM Model wherein the
mode relaxation times are no longer treated as con-
stants. In this model, each mode relaxation time is
taken as a function of the corresponding mode stress
tensor. Here, we choose the following relationship to
express this functional dependency:

o,i ki
)\1‘ = )\O’i(tr(nl-I<BT> + 1) ’ (7)

where k; = 0, which is similar in spirit and practice to
the relationship of Souvaliotis and Beris.* We chose
this slightly different functional form of eq. (7) because
it seems to give a somewhat smoother description of
steady shear flow properties than the one originally
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Figure 3 Elongational viscosity as a function of time, as predicted with the UMM Model. ER refers to the strain rate, in units

of reciprocal seconds.

proposed by the former authors. Note that other than
this small change, all other equations from the preced-
ing section carry over to this case. Consequently, the
UEWM Model will reduce to the UMM Model when
all of the k; are equal to zero.

As described in the section on optimization, we fit
the parameters of the UEWM Model to experimental
data of SAOSF, steady-shear viscosity, and first nor-
mal stress coefficient. Then, we predict the rheological
properties of polymer melts in transient shear and
uniaxial elongational flows using the corresponding
parameters acquired through the data fitting. The pa-
rameter values obtained through the fitting are re-
ported in Table IV.

As for the SAOSF experimental data, the fit
achieved here is not quite as good as in the previous

two cases, but it is still less than 10% RMS error. (See
Table V for a compilation of RMS errors for this
study.) Figure 4 displays the fits to the steady shear
viscosity and first normal stress coefficient. The fits
are quite decent, with associated RMS errors of
roughly 8 and 6%, respectively. Note that the steady
shear viscosity is fitted over seven decades of shear
rate. Obviously, this model does a much better job
of fitting steady shear data than the UMM Model,
which is strictly linear. The prediction for the sec-
ond normal stress coefficient is again zero, since the
UEWM Model does nothing to correct this inade-
quacy of the UMM Model. (See Table VI for zero
shear-rate values of ¥,/V¥,.)

We plot the shear stress (SS) and first normal stress
difference (N,) versus time for transient shear flow at

TABLE IV
List of Parameters for All Modes of the UEWM Model Used To Fit the Experimental Data of Dynamic Moduli, Shear
Viscosity, and First Normal Stress Coefficient

Mode no. 1 2 3 4 5 6
Aoi s) 1.000E—8 9.288E—3 1.854E—2 1.191E—-1 1.054 8.978
n, (mol/m?) 6.925E—10 1.811E+1 8.782E—19 4.649 1.067 2.206E—1
k —7.573E-7 —2.004 —6.184E—16 —1.994E+1 —1.492 —4.796E—1
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TABLE V
The Relative Root-Mean-Square (RMS) Error (%) of Different Curves Attained by Different Models. Note that the first
three columns are fits, and the last three columns are predictions.

Complex Steady-state Elongational Transient shear stress Transient N;
Model modulus shear viscosity v, viscosity (y=05&1.0s71) (y=05&10sh
UMM 2.20 16,000 1,200 63,300 271 482
UEWM 9.38 8.04 6.25 94.8 18.5 51.2
UGM 4.78 8.59 7.68 493 7.60 130
PCMM 24.4 26.1 26.5 6,670 412 128
PCMM-EWM 11.5 6.28 7.11 51,400 24.1 54.1
FCMM 23.4 26.2 26.7 7,230 31.5 124
FCMM-EWM 271 5.47 12.7 841 11.8 126

0.5s"' and 1.0s™', respectively, in Figures 5 and 6.
These plots are presented logarithmically, which ac-
centuates the differences between the theoretical pre-
dictions and the experimental data at very short and
very long times. Data were taken at shear rates rang-
ing from 0.01 to 55~ ', with similar results obtained as
those reported herein. In both cases, the shear stress
transients at flow start-up and cessation are predicted
fairly well, with only a slight under-prediction of the
overshoot upon start-up. The prediction of the first
normal stress difference fares well over most of the
time range examined, but fails quantitatively at both

short and long times. The model over-predicts N; at
low times, and under-predicts it at long times. This
seems to indicate that the relaxation times fitted to the
SAQOSF data and steady shear data only do not capture
the full range of characteristic time scales for the tran-
sient shear behavior. This is probably due to the lim-
ited range of the SAOSF experiment (0.01 to 100s™ "),
or else due to the fact that the SAOSF experiment does
not probe Nj.

In Figure 7, we plot the elongational viscosity ver-
sus time for different elongation rates. The plot shows
that the elongational viscosity increases with increas-
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Figure 4 Steady-state shear viscosity and first normal stress coefficient versus shear rate, fitted with the UEWM Model.
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TABLE VI
Ratio of the Second Normal Stress Coefficient to the First at Low Shear Rates for the Different Models
Model UMM UEWM UGM PCMM PCMM-EWM FCMM FCMM-EWM
v,/ 0 0 —9.82E—2 —9.15E-2 —4.52E—17 —9.20E—2 —1.34E-9
ing time and then reaches a steady-state value. Unfor- 1_ 1_ a
tunately, the theoretical predictions underestimate the Oupt AiGop + Gi T = 2miA g, (8)

experimental results, and actually fall below the Trou-
ton curve (at a shear rate 0.01s'); this is possible
because the UEWM Model exhibits both thickening
and thinning behavior of the elongational viscosity,
depending on the choice of parameters.* The predic-
tion obtained is actually better than the UMM Model
prediction from an RMS perspective (see Table V), but
still cannot be considered a success.

Uncoupled, nonlinear relaxation models

The next class of rheological models examined is that
of uncoupled, nonlinear relaxation models. The exam-
ple of this class studied here is the Uncoupled
Giesekus Modes (UGM) Model. The constitutive equa-
tion for each mode stress tensor is taken as”

where G{, = n,N,kzT and n; = n,NkzTA;. The addi-
tional parameter, «, is the mobility factor, lying within
the range 0 = a = 1. The total extra stress tensor is
again given by the sum of the mode stress tensors, eq.
(4). The dynamic moduli in SAOSF are still given by
egs. (5) and (6), since the nonlinear terms in the UGM
Model do not contribute to the linear viscoelastic be-
havior.

Consistent fits for the data of dynamic moduli, shear
viscosity, and first normal stress coefficient were ob-
tained with this model; the parameter values thus
obtained are reported in Table VII. Plots of these fits
are quite similar to those of Figures 1 and 4. The RMS
errors associated with these fits are reported in
Table V.
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Figure 5 Transient stresses as a function of time, predicted with the UEWM Model for the LDPE melt (y = 0.5 s~ ). SS refers
to shear stress, and N1 refers to the first normal stress difference.
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Figure 6 Transient stresses as a function of time, predicted with the UEWM Model (¥ = 1.0 s~ '). SS refers to shear stress,

and N1 refers to the first normal stress difference.

The zero shear rate value of ¥,/¥; ~ —0.1 pre-
dicted by the model is quite reasonable. (See Table VI
for the exact value.) The transient shear stress under
start-up and cessation of shear flow is also described
well, as seen in Figures 8 and 9. The overshoot upon
start-up of shear is quantitatively predicted in magni-
tude and duration. The relaxation behavior is quanti-
tatively predicted at all but the longest times and
highest shear rates for which data was obtained. At
low values of shear rate (not presented in this article),
the first normal stress difference predictions are also
quite good. At higher values of the shear rate, as
shown in Figures 8 and 9, the problems of the UEWM
Model remain with regard to the very short and very
long time behavior. Furthermore, the overshoot in N,
barely apparent in the experimental data, is quite
prominent in the model predictions. The magnitude of
the predicted overshoot is roughly three times the
magnitude of the experimental overshoot. As the
shear rate is increased beyond 1s™ ', this discrepancy
tends to disappear as the experimental overshoot
gains magnitude quickly. Unfortunately, measure-
ments could not be obtained beyond 5s~'. One inter-
esting point is that both the predictions and data attain
a steady-state value at approximately the same point
in time.

In Figure 10, we plot the elongational viscosity ver-
sus time for the different elongational rates. The pre-
dictions for this quantity are much better than those
for the UEWM Model, but the steady-state values are
still too low. This result is congruent with the gener-
ally accepted viewpoint that the Giesekus Model does
a good job describing extensional flow characteristics.

Pair-wise coupled relaxation models

In this section, we begin to examine whether or not
coupling between the various relaxation modes can
contribute to the rheological response of a polymer
melt. Intuitively, it seems evident that such would be
the case; however, such a coupling is not going to be
apparent in every rheological characterization experi-
ment. For the present section, we limit our examina-
tion to models with pair-wise coupling between the
various modes; that is, each mode can couple with
one, and only one, additional mode. Our reasons for
examining this case are discussed in the Introduction.
However, we will look at two versions of pair-wise
coupled relaxation models, the simplest possible ver-
sion, the Pair-wise Coupled Maxwell Modes (PCMM)
Model, and the Pair-Wise Coupled Maxwell Modes
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Figure 7 Elongational viscosity as a function of time, predicted with the UEWM Model. ER refers to the strain rate, in units

of reciprocal seconds.

Model with the White/Metzner-like extension de-
scribed above (PCMM-EWM).

The PCMM Model

The constitutive equations for the mode stress tensors
in the PCMM Model are given by'!*:

n;\; ;
O'QB
\7;A;

(O-ixyo-jyﬁ + UQVU;B) = ZniAozB/ (9)

n;

ij Tl]-

NGl + ohp + 0

+
2nkgT \nA;

where 6;; is a coupling parameter that quantifies the
degree of interaction between modes i and j. From
experience,'® the coupling parameters are required to
lie within the interval, [0,1], but are typically small
positive fractions. The evolution equation for mode j is
the same as eq. (9) with the indices permuted. For a
fluid modeled with 6 modes, there are three indepen-
dent pairs of coupled evolution equations of this type.
The total extra stress tensor is once again obtained
through eq. (4).

The coupling in the PCMM Model affects the linear
viscoelastic behavior?’; hence, the complex modulus
in SAOSF is no longer that of the UMM Model, but is
given by

TABLE VII
List of Parameters for All Modes of the UGM Model Used To Fit the Data of Dynamic Moduli, Shear Viscosity, and
First Normal Stress Coefficient

Mode no. 1 2 3 4 5 6
A (s) 4.006E—4 9.481E—-3 3.291E-2 8.672E—2 7.070E—1 7.795
n,; (mol/m?) 7.714E+1 1.251E+1 1.354E—-3 4.792 1.603 2.281E—-1
Q; 1.862E—1 8.930E—1 3.375E—-20 3.926E—1 9.193E—1 1.540E—-1

1
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Figure 8 Transient stresses as a function of time, as predicted with the UGM Model (¥ = 0.5 s ).

% _ m(Deji +1) + le(Deii +1) - \r‘/meij)(ij (10)
where
_ _ nDe;  m;De;
Dei = UJ)\Z', and X,] = ’T’jDei ’T]Z-Dej . (11)

Note that eq. (10) applies to each pair of modes, so that
the total complex modulus is given by the sum of
three quantities. In the limit of 6; — 0, it can be shown
that eq. (10) reduces to the complex modulus of the
UMM Model, egs. (5) and (6).

The PCMM Model was studied extensively by Jiang
et al.,' and was found to be a very peculiar model. It
was used as the test case for our preliminary study,
and so will only be discussed very briefly here. The fits
to the dynamics moduli, steady shear viscosity, and
first normal stress coefficient display a characteristic
waviness.! The cause of this is the inherently linear
nature of the Maxwell relaxation modes; that is, with-
out the coupling parameter, the model reduces to the
UMM Model, with all of its associated problems aris-
ing from its linear responses. In order for the PCMM
Model to fit the shear-thinning behavior of n or Ny, it
is necessary for this model to have nonzero values of

the coupling parameters, 6;. Consequently, the model
must set the concentration of 1 mode of each pair (the
one with the shorter relaxation time) to zero to pro-
duce artificially the shear-thinning behavior. Thus,
one really obtains only a 3-mode fit (since only 3
modes influence the stress tensor) of the complex
modulus, thus producing the inherent waviness. For
more details as to this phenomenon, please refer to the
previous article.'

Because of the waviness of the steady shear data, the
RMS error of these curves is much greater than the
previous cases. Consequently, predictions of the tran-
sient shear and elongational behavior are also subject
to errors, and nothing is to be gained by presenting
them. It is interesting, however, that the prediction for

the ratio of normal stress coefficients is approximately
-0.09.

The PCMM-EWM Model

One might expect that replacing the constant relax-
ation times in the PCMM Model with the White/
Metzner extension of eq. (7) could alleviate the prob-
lems reported in the preceding subsection. This would
relieve the smaller relaxation time modes of each pair
of the necessity of having a null value for their con-
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TABLE VIII
List of Parameters for All Modes of the PCMM-EWM Model Used To Fit the Data of Complex Modulus, Shear
Viscosity, and First Normal Stress Coefficient

Mode no. 1 2 4 5 6
Ag,i (s) 1.013E-5 4.313E—1 5.314E—4 3.284E—-2 3.569E—-3 6.933
n, (mol/m?) 1.313E—-6 2.538 4.728E—-11 8.428 2.180E+1 3.331E—1
k; —1.073E—14 —3.605 —1.797E+1 —4.690E—4 —1.866 —5.236E—1
0;; 3.909E—-18 3.000E—18 4.196E—18

centration parameters, since the EWM nonlinearity
would produce the requisite shear-thinning behavior.
This expectation was tested, with the following re-
sults.

The constitutive equations for the mode stress ten-
sors in this case are the same as eq. (9) above, with eq.
(7) inserted for the mode relaxation times. The equa-
tion for the complex modulus, eq. (10), is not affected
by this insertion, since it is a linearized expression.
Using these equations, the model was fitted to the
same data as prior cases, and the parameters reported
in Table VIII were obtained. Note that the modal
concentrations of the shorter relaxation times are not
necessarily null-valued now. The fits obtained with
these parameter values for the dynamic moduli, shear
viscosity, and first normal stress coefficient are very

similar to those of Figures 1 and 4, and are not
presented. The RMS errors of the fits are reported in
Table V.

Predictions for the transient shear and elonga-
tional behavior are presented in Figures 11 to 13.
The shear behavior is similar to that of the UGM
Model, whereas the elongational prediction has im-
proved over that of the UGM Model. Interestingly,
the value of the normal stress ratio has dropped to
zero (see Table VI). Note that the coupling param-
eter values in Table VIII are all very small, indicat-
ing that this model performs similarly to the UEWM
Model. The only effect of the coupling thus appears
to be on the elongational viscosity. These trends will
be considered in greater detail in the discussion
below.
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Figure 11 Transient shear stress as a function of time, as predicted with the PCMM-EWM Model (¥ = 0.5 s ).
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Fully-Coupled relaxation models

The obvious generalization of the PCMM Models is
to allow full coupling between all of the mode stress
tensors. Thus, we examine a Fully-Coupled Maxwell
Modes (FCMM) Model, as well as an FCMM Model
with the White/Metzner-like extension (FCMM-
EWM Model). It is highly likely that such generality
will not be necessary, and that only some modes
will interact with each other. Here, we allow the
optimization methodology to choose the degree of
coupling necessary to fit the requisite experimental
data. As seen below, many of the coupling param-
eters turn out to be negligibly small, indicating ef-
fectively no interactions between the corresponding

relaxation modes.
The FCMM Model
In this model, the constitutive equations for the mode
stress tensors are given by'!
]' 612 E \ 1/\1 6111 E 1/\1
1’[2 712/\2 nn nn)\ﬂ
ny 2, ny 2,
e i 1 " El
621 nl nl)\l 02” nn nn/\n
6 nn . n)\n 6 nn . VIAIZ 1
nl n2
ny \mA n, \MA
M — 1 1711 2 272
_)\10) 0 O
0 _)\2(0 0
0 0 —\,w

The FCMM Model has the same problem as the
PCMM Model, namely, the linear Maxwell-type re-
laxation is not adequate to capture the shear-thin-
ning behavior of the steady shear flow properties.
Consequently, a fit of the moduli, shear viscosity,
and first normal stress coefficient again reveals that
all but one (at most) of the coupling parameters are
negligibly small. This is required to reproduce arti-
ficially the necessary shear-thinning characteristics.
As a consequence, the fits again display the wavy
nature of the PCMM Model fits.! All other charac-
teristics are similar to the PCMM Model, described
above.

The FCMM-EWM Model

The last model examined here is the FCMM-EWM
Model, wherein the relaxation times in eqs. (12) to

JIANG ET AL.

6
n;

AiGp + 04p > 0; 7\ Ol
j=1j#i i VA
S b s el = 2
Zn]kBT n])\] (O-a O-VB O-HVO-YB) - 771' af*

j=1j#i

(12)

For a given number of modes, n, the dynamical mod-
uli in SAOSF can be calculated according to the linear
equation

[Gi,...,G, Gl ...,G]"
=M7"-[0,...,0,nqo,..., n0l, (13)
where
_)\1(0 0 O
0 _Az(l) 0
0 0 —\,w
14
ny ])\] ny l/\l ( )
1 O, — Oy
7’12 nZ/\Z nn nn/\n
1y 2o 1y 2,
2 1 "2
021 nl nl)\l 92” n nn)\n
6 n" ‘ VIAH 6 nn ‘ n)\n 1
T NmA, "y, \mph, .

(14) are replaced with the EWM relaxation time of
eq. (7). Parameter fits to the moduli, viscosity, and
first normal stress coefficient are again very similar
to those presented in Figures 1 and 4, and RMS
errors are reported in Table V. Tables IX and X
contain the optimized parameter values. Note from
Table X that many of the coupling parameters are
still chosen to be zero, although there is a definite
trend away from pair-wise coupling.

Predictions for the transient shear and elonga-
tional stresses are presented in Figures 14 to 16.
RMS errors are collected in Table V. The predictions
are quite good for the shear properties, except again
for N, at very short and very long times. The elon-
gational viscosity predictions display the correct
qualitative trends, but are not particularly good.
The ratio of the normal stress coefficients is very
small.



PREDICTING RHEOLOGICAL PROPERTIES OF POLYMERIC MELTS 421

TABLE IX
List of Non-Coupling Parameters for All Modes of the FCMM-EWM Model Used To Fit the Data of Complex
Modulus, Shear Viscosity, and First Normal Stress Coefficient

Mode no. 1 2 4 5 6
Ag,i (8) 1.637E—4 2.391E-2 3.153E—-2 1.015E+1 1.585 2.346E—1
n, (mol/m?) 7.076E—4 3.461E+1 7.329 1.347E—-1 7.747E—1 2.693
k; —9.009E—2 —2.670 —1.320E2 —4.564E—1 —9.662E—1 —4.049

Comparison of model performances

RMS errors for the various models in the different
experiments are summarized in Table V. Overall, it is
evident that the UGM and FCMM-EWM Models pro-
vide the best fitting and predictive capabilities of the
models tested. Although the UGM Model has a lower
RMS error for elongational viscosity than the FCMM-
EWM Model, this is probably due simply to the fact
that the former model under-predicts the viscosity,
whereas the latter model over-predicts it. Qualita-
tively, the FCMM-EWM Model provides more esthet-
ically appealing fits of this quantity.

Thus, overall, the UGM and FCMM-EWM Models
are the best models examined herein, although the
FCMM-EWM Model contains the highest number of
parameters (see Table I): the UGM Model has 18 pa-
rameters, and the FCMM-EWM Model has 48 param-
eters. Note, however, that the optimized fit of the
FCMM-EWM Model has only 28 non-negligible pa-
rameters, whereas the UGM Model has 17 non-negli-
gible parameters. Hence, the FCMM-EWM Model is
being fit with only about half of its inherent parame-
ters. This model is also the most complex, and one
must wonder at present whether or not this additional
complexity is necessary. Unfortunately, the experi-
ments performed herein are probably not the best ones
to help answer this question. Double-strain experi-
ments (currently underway), wherein one might ex-
pect to see dramatic mode coupling effects, will pro-
vide a more complete picture of this aspect of the
modeling.

Another interesting observation regarding the
model behavior presented above is that the UGM
Model gives a reasonable value of ¥,/¥,, as do the
PCMM and FCMM Models. It is noteworthy that the

FCMM-EWM Model does not. The source of this in-
adequacy is most likely due to the use of the White/
Metzner (WM) extension; remember that the UEWM
Model still retained a null ratio. It thus seems plausi-
ble that having a reasonable value of this ratio is
controlled by the nonlinear (quadratic) relaxation
terms in the UGM Model. In the coupled models
without the WM extension, a reasonable value is ob-
tained because the nonlinear relaxation effect is not
washed out by the WM modifications. This gives some
minor indication that perhaps coupling effects (which
are highly nonlinear) can affect steady shear elastic
properties such as ¥,, assuming that the uncoupled
nonlinear models are merely mimicking the effects of
the coupled models. More investigation will hopefully
yield a definitive answer to this puzzle.

CONCLUSIONS

The potential of rheological models to fit and predict
experimental data was investigated in this article. For
a series of models, parameter fits were generated by a
numerical optimization procedure by fitting to exper-
imental data from SAOSF and steady shear flow.
Model predictions were then obtained for transient
shear and elongational flows, and these were com-
pared with available experimental data. Some models
perform very well in one or two types of flows, al-
though none of models can perform perfectly in all
types of flows. All of the models examined herein
were very simple, semiphenomenological models, and
were only used as representatives of the various
classes of rheological models in use today. Neverthe-
less, the outlook seems bright for addressing the in-
adequacies of rheological constitutive equations and

TABLE X
List of Coupling Parameters for All Modes of the FCMM-EWM Model Used To Fit the Data of Complex Modulus,
Shear Viscosity, and First Normal Stress Coefficient

0; 1 2 3 4 5 6

1 — 2.215E—12 1.284E—20 1.781E—20 1.122E—10 1.787E—10
2 2.215E—12 — 1.082E—19 1.212E—-20 1.316E—20 2.408E—20
3 1.284E—20 1.082E—19 — 1.236E—20 1.185E—20 4121E-12
4 1.781E—20 1.212E—20 1.236E—20 — 1.854E—20 8.720E—9
5 1.122E-10 1.316E—20 1.185E—20 1.854E—20 — 6.446E—20
6 1.787E—10 2.408E—20 4121E-12 8.720E—9 6.446E—20 —
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Figure 16 Elongational viscosity as a function of time, predicted with the FCMM-EWM Model.

potentially describing real materials with unprece-
dented accuracy. Such an event would be well worth
pursuing.

We thank Drs. Simhambhatla and Leonov for allowing us to
use their Padé-Laplace program PADLAP for determining
the base-case linear viscoelastic parameters.
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